
1

Robotics with the XBC

Controller
Session 3

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

2

Learning Goals

ÂThe student will learn about
variables and data types in
Interactive C, analog sensors, for-
next loops, and IC library functions.

3

A review of where we have
beené.

ÂBasic C programmingé
ÂAll C programs begin execution at the
ñmainò function.

ÂBlocks of code are contained in curly
braces.
ÅExampleé

void main()

{

printf(ñHello XBCò)

}

4

Slightly more advanced C
programming

ÂLooping
ÂWith an óIféthenô branché
ÅTakes the form:

if (<expression>)
<statement-1>
else <statement-2>

<expression> = a test

<statement-1> = a block of statements to execute
if <expression> is TRUE

else <statement-2> = an optional group of
statements to execute if <expression> is FALSE.

5

While loopsé..

ÂWhile loops are the basic looping
structure in C.

Â Takes the form:

Â while (<expression>)

<statement>

Â (<expression>) = a test

Â <statement> = C program statements to execute if

(<expression>) evaluates to TRUE

ÂMultiple statements can be contained in braces { }

6

A real Botball exampleé

Â The students robot had to drive forward
only a certain distance as quickly as
possible.

Â An ingenious switch and string device was
used.

Â String was tied off to the table.

ÂWhen string became taught it activated a
switch, C code detected this and shut the
motors off.

7

A real Botball example
continuedé

while (digital(10) == 0) // is the switch triggered

{

fd(0);

fd(2);

}

ao(); // if yes stop

8

If ïThen and while
exampleé

void main()

{

while(1)

{

if (a_button() == 1)

{

printf(ñA BUTTON PRESSED!!!");

}// end if

}// end while

}// end main

9

Digital sensors

ÂReturn either a 0 or a 1.

ÂOnly two states.

ÂButtons and touch switches are the
most common.

ÂAccessed with the digital() function.
Âdigital(<port#);

ÅPort# = ports 8-15

ÅReturns a 0 or a 1

10

Motor control

Âmotor(<motor_#>, <speed>)

Â ao();

Â Turn all motors off

Â fd(<motor_#>);

ÂTurn on motor_# in a ñforwardò direction.

Â bk(<motor_#>);
ÂTurn on motor_# in a backwards direction.

Â off(<motor_#>);
Â Turn off motor_#

11

Analog sensors

Â Analog sensors return a range of values.

Â Examples:

Â Light sensors

Â Range finding sensors

Â Temperature sensors

Â Pressure sensors

Â Voltage sensors

Â Sound level sensors

12

Analog sensor resolution

ÂThe resolution of an analog sensor
is the smallest change it can detect
in the quantity that it is measuring.

ÂAnalog sensors return a number
defined by the number of bits of
resolution.

ÂFor example, an 8 bit sensor can
return 256 different results (0-255).

13

Analog functionsé
Â Extremely simple to use in Interactive C.
Â Function definitions as they appear in the IC

manual:
Â int analog (int p)
ÅReturns an 8 bit (0-255) reading.
Åp = port number

Â int analog12 (int p)
ÅReturns a 12 bit (0-4095) reading.
Åp = port number

Â Ports 0 and 1 are floating (high impedance input used with
active sensors such as IR range finder which output a
positive voltage less than 5 volts)

Â Ports 2-6 have ópull-upô resistors to 5 volts for passive
sensors.

Â YOU SHOULD NOT CONNECT TO ANALOG PORT 7!

Â Reserved for battery voltage monitoring.

Â power_level() returns a floating pt. voltage value

14

Using the interaction
window

Â Plug an infrared (IR) range finding sensor into
analog port 1.

Â Sometimes called an ñETò sensor.
Â Returns a number related to the range to the nearest

object.
Â Sends an IR beam out and measures the angle of the

reflected beam.
Â Is insensitive to the color of the target object

Â Click on the IC tab called ñinteractionò

15

Using the interaction
window

Â At the bottom of the interaction window is a
place to type IC commands.

Â Make certain your XBC is plugged in and turned
on.

Â Hold the IR range finding sensor about 10-12
inches from an object.

Â Type ñanalog(1);ò into the interaction window
and press return.

Â IC should return an 8 bit number.

Â Experiment by holding the sensor at different
ranges.

Â Also try the analog12() function.

16

IR Range Finder
Continuedé

ÂNotice the number is not a range and that
the response is not quite linear.

Â Low values indicate a large distance (d)

Â Result is approximately 1/(d)^2 and is
useable only up to 4 inches

ÂObjects closer than 4 inches will appear
to be farther away.

17

A program that constantly
reports IR sensor readingsé

void main()

{

while(1)

{

display_clear();

printf("Range value: %d", analog(1));

sleep(.25);

}

}

18

What is with the weird
ñprintfò statement?

Â printf is a whole lesson latter in the
course.

Â In our case the line:

printf("Range value: %d", analog(1));

Simply prints the results of the ñanalog(1)ò
function call.

Â%d is a place holder for that number. It tells
the compiler ñHey, an integer number is going
to be printed in this spot!ò

19

A short assignment

ÂModify the previous program so that a
value is only printed to the screen if the
user presses the ñaò button on the
Gameboy.

ÂHint ïmost of the program will remain
the same.

ÂHint ïYou only need to add something
just before the display_clear() function.

ÂHint ïwe learned about it last session
and in our review today.

* See solution at end

20

Variables and Data Types

ÂVariables are ñplace holdersò in C. They
hold data.

Â Think of them as boxes that can hold
information.

ÂWe can change and access that
information.

Â In C you MUST tell the compiler what
type of information you wish to store in a
variable.

21

Data types in C.

Â16 - bit Integers

Å16-bit integers are signified by the type
indicator int . They are signed integers,

and may be valued from -32,768 to
+32,767 decimal.

Â32 - bit Integers

Å32-bit integers are signified by the type
indicator long . They are signed integers,

and may be valued from -2,147,483,648 to
+2,147,483,647 decimal.

22

More Data Types
Â 32 - bit Floating Point Numbers

Floating point numbers are signified by the type

indicator float . They have approximately seven

decimal digits of precision and are valued from

about 10^-38 to 10^38.

Â 8 - bit Characters

Characters are an 8-bit number signified by the type

indicator char . A character's value typically

represents a printable symbol using the standard

ASCII character code, but this is not necessary;

characters can be used to refer to arbitrary 8-bit

numbers.

23

More on variables

Â All variables MUST have a name.
Â The name should be descriptive

Â Names are case sensitive

Â Underscore character allowed _
ÅUsually used to separate words

Årange_to_object

Â Letters, numbers and the underscore may be
used, but may not start with a number

ÂC keywords such as if, while, for etcé cannot
be used as names

ÂMust be declared at the top level of a block.

24

An example of using
variablesé.

void main()

{ // Calibrating the IR range finder

float distance;

float max_squared = 200.0;

while(b_button() == 0)

{

distance = sqrt(max_squared/(float)analog(1));

display_clear();

printf("Range: %f", distance);

sleep(.25);

}

}

25

Things to notice

ÂThe variables were declared at the
TOP of main.

ÂEach variable had a descriptive
name.

ÂWe can use variables to store the
return information from functions.

26

Variable scope

ÂAll variables have a ñscopeò or the
area in which they take precedence.
ÂIf declared within a function or as an

argument to a function it is local to that
function and not available outside of it.

ÂIf declared outside of a function then it
is global and available to all functions.

ÂLocal variables take precedence if a
local and global variable have the same
name.

27

Variable scope example.
// These variables are global...
int a=10;
int b=20;
int c=30;

void main()
{

int c=100; // This variable is local
int answer; // so is this one

answer = a + b + c;

printf("Answer = %d", answer);

//prints 130 because it uses the LOCAL copy of c.
}

28

Things to noticeé.

ÂTwo variables had the same name.

Â int c was declared globally outside of
main.

Â int c was also declared locally inside of
main

ÂThe copy of c that was local to main
was used in the calculation

29

Special notes on using the
LONG data type.

Â If a number is defined as LONG then the character L
must appear at the end to tell the compiler this is a
special LONG integer.

Â For example, this does not work:

void main()

{

long result;

result = result + 1000;

}

Â This does:

void main()

{

long result;

result = result + 1000L;

}

30

More on LONG data types

ÂOnly basic arithmetic and
comparison operations are allowed.

ÂBitwise and boolean operations and
division are not supported.

31

For-next loopsé

Â The syntax of a for loop is the following:

Â for (<expr-1>;<expr-2>;<expr-3>)
<statement>
Â <expr-1> is an assignment

Â <expr-2> is a relational expression

Â <expr-3> is an increment or decrement of some
manner

Â <statement> is a group of C statements to be
executed each time through the loop if <expr-2>
evaluates to TRUE.

32

Example of counting to
100é

void main()

{

int count;

for (count = 0;count <=100; count++)

{

display_clear();

printf("%d", count);

sleep(.1);

}// end the for loop

}

33

A more practical exampleé.
Â The following program will smoothly and slowly position a servo.

void main()

{

int current_position;

int desired_position=128;

enable_servos();

for (current_position = 0;current_position<= desired_position;
current_position+=5)

{

display_clear();

set_servo_position(0,current_position);

printf("%d", current_position);

sleep(.1);

}// end the for loop

}

34

IC library functions

ÂIC has many built in functions called
library functions.

ÂHow to find the library functions in
the IC manual.

ÂReading the IC library files.

35

Project assignment

Â Mount two IR distance sensors on your robot.

Â Place one on the left plugged into port 0 and one
on the right plugged into port 1.

Â When either IR sensor senses something within
6 inches it should back up and turn away.

Â Use variables in the program.

Â Keep track of the number of ñhitsò on each side
and print that to the screen.

Â The user should be able to stop the program by
pressing the ñaò button.

36

void main()

{// Plug the left motor into port 2 ïthe right motor into port 0

int left_hits; // keeps track of the number of hits on each side

int right_hits;

sleep(3.0);

while(a_button() == 0)

{

fd(0);// get us going forward

fd(2);

//print the number of hits on each side

display_clear();

printf("Left hits: %d\n", left_hits);

printf("Right hits: %d\n", right_hits);

if(analog(0) > 200) // is something close to the left side?

{

left_hits++; // increment our left hit count

bk(0); // back up

bk(2);

sleep(.5);

fd(2); // turn right

sleep(.5);

}// end if

if(analog(1) > 200) // is something close to the right side?

{

right_hits++; // increment our right hit count

bk(0); // back up

bk(2);

sleep(.5);

fd(0); // turn left

sleep(.5);

}//end if

}// end while

} // end main

37

Solution to óA Short Assignmentô - IR
sensor readings when A button Pressed

void main()

{

while(1)

{

if(a_button()==1){

display_clear();

printf("Range value: %d", analog(1));

sleep(.25);

}

}

}

